Slopes of modular forms and ghost conjecture

Bin Zhao

Capital Normal University

December 16,2022

Bin Zhao (CNU)

Slopes of modular forms and ghost conjecture

December 16,2022 1 / 22

æ

5900

<日 → < □ → < □ → < □ →

Introduction

Slopes of cuspforms

- Fix a prime p > 2 and a positive integer N.
- Let $f \in S_k(\Gamma_1(N))$ be a cuspidal modular form of weight $k \ge 2$ and level $\Gamma_1(N)$. Let $f = \sum_{n \ge 1} a_n q^n$, $q = e^{2\pi i z}$ be the Fourier expansion of f(z). Assume that f is normalized, i.e. $a_1 = 1$.
- Fix two embeddings $i: \overline{\mathbb{Q}} \to \mathbb{C}$ and $i_p: \overline{\mathbb{Q}} \to \mathbb{C}_p$. Let $v_p(\cdot)$ be the *p*-adic valuation of \mathbb{C}_p normalized by $v_p(p) = 1$. Let $|\cdot|_p = p^{-v_p(\cdot)}$ be the corresponding *p*-adic norm.
- When f is an Hecke eigenform, Shimura proved that the subfield $\mathbb{Q}(f)$ of \mathbb{C} generated by the coefficients a_n 's is a finite extension of \mathbb{Q} . We will view a_n 's as p-adic numbers in \mathbb{C}_p via the embeddings i and i_p . The p-adic valuation $v_p(a_p)$ is called the (p-adic) slope of f.
- Goal: give an algorithm to compute the slopes of Hecke eigenforms.

5900

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Newton polygon of U_p -operator

• Assume p|N. Let $\det(I - X \cdot U_p|_{S_k(\Gamma_1(N))}) = \sum_{i=0}^d c_i X^i$ be the characteristic polynomial of the U_p -operator on the space $S_k(\Gamma_1(N))$ with $d = \dim S_k(\Gamma_1(N))$. The Newton polygon of this polynomial is the lower convex hull of the points $(i, v_p(c_i)), i = 0, \ldots, d$ on the x-y plane.

- Since a_p is the U_p -eigenvalue of f, the computation of the slopes of Hecke eigenforms is equivalent to that of the slopes of the Newton polygon of $det(I X \cdot U_p)$.
- Let $S_k^{\dagger}(\Gamma_1(N))$ be the space of overconvergent cuspidal modular forms of weight k and level $\Gamma_1(N)$. The U_p -operator on $S_k(\Gamma_1(N))$ extends to a compact operator on $S_k^{\dagger}(\Gamma_1(N))$ and let $C_k(X) = \det(I - X \cdot U_p|_{S_k^{\dagger}(\Gamma_1(N))}) = \sum_{n \ge 0} c_n X^n \in \mathbb{Q}_p[\![X]\!]$ be its

Fredholm series. We can define the Newton polygon $NP(C_k)$ of $C_k(X)$ similarly.

SQA

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Introduction

Coleman's result on Fredholm series

- We define the weight space W to be the rigid analytic space associated to the Iwasawa algebra Z_p [[Z_p[×]]]. Geometrically W is the disjoint union ^ω W_ε of open unit discs indexed by the characters of the torsion subgroup Δ of Z_p[×]. A p-adic weight κ is a closed point κ ∈ W(C_p) = Hom_{cts}(Z_p[×], C_p[×]). Fix a topological generator γ = exp(p) of 1 + pZ_p. We define w_κ = κ(γ) - 1 to be the coordinate of κ on the corresponding weight disc.
- For any *p*-adic weight κ, let S[†]_κ(Γ₁(N)) be the space of overconvergent cuspidal modular forms of weight κ and level Γ₁(N). We can define the Fredholm series C_κ(X) for the U_p-operator in weight κ in the same way.
- Coleman proved that for each character ε of Δ , there exists a two variable series $C^{(\varepsilon)}(w, X) = 1 + \sum_{n \ge 1} c_n^{(\varepsilon)}(w) X^n \in \mathbb{Z}_p[\![w, X]\!]$, such that $C^{(\varepsilon)}(w_{\kappa}, X) = C_{\kappa}(X)$ for all $\kappa \in \mathcal{W}_{\varepsilon}(\mathbb{C}_p)$.
- Bergdall and Pollack's idea: find an explicit 'model' to approximate $C^{(\varepsilon)}(w, X)$.

Sac

Ghost conjecture

Galois input

- From now on we assume (p, N) = 1. Denote $\Gamma = \Gamma_1(N) \cap \Gamma_0(p)$.
- Let $\bar{\rho} : \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\bar{\mathbb{F}}_p)$ be a continuous irreducible odd representation.
- Assume that $\bar{\rho}$ is modular of level N. For every integer $k \geq 2$, let $S_k(\Gamma_1(N))_{\bar{\rho}} \coloneqq (S_k(\Gamma_1(N), \mathbb{Z}_p)_{\mathfrak{m}_{\bar{\rho}}})[\frac{1}{p}]$ be the $\bar{\rho}$ -component of $S_k(\Gamma_1(N), \mathbb{Q}_p)$. We define $S_k(\Gamma)_{\bar{\rho}}$ in a similar way. The space $S_k(\Gamma_1(N))_{\bar{\rho}}$ is stable under the T_p -operator and $S_k(\Gamma)_{\bar{\rho}}$ is stable under the U_p -operator.
- Fix a decomposition group $D_p \subset \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and let $I_p \subset D_p$ be the inertia subgroup. Let $\omega_1 : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \overline{\mathbb{F}}_p$ be the mod p cyclotomic character.
- Assumption (Buzzard regularity): the local representation $\bar{\rho}|_{D_p}$ is reducible ,and there exists $a \in \{1, \ldots, p-4\}$ and $b \in \{0, \ldots, p-2\}$, such that

$$\bar{
ho}|_{I_p} \sim \left(\begin{smallmatrix} \omega_1^{a+1} & * \\ 0 & 1 \end{smallmatrix}
ight) \otimes \omega_1^b$$

• Under this regular assumption, the T_p -eigenvalues on the space $S_k(\Gamma_1(N))_{\bar{\rho}}$ are all p-adic units for $2 \le k \le 1 + p$.

Ghost conjecture

ghost series

- For any *p*-adic weight κ ∈ W(C_p), let S[†]_κ(Γ) denote the space of overconvergent cuspforms of weight κ and tame level N and S[†]_κ(Γ)_{ρ̄} be its ρ̄-isotypic subspace. The U_p-operator leaves S[†]_κ(Γ)_{ρ̄} and we let C_{ρ̄,κ}(X) = C_{ρ̄,κ,N}(X) = 1 + ∑_{i≥1} c_i(w_κ)Xⁱ be the Fredholm series of this operator.
- Let $k_0 = 2 + a + 2b$. For each integer $k \ge 2$ satisfying $k \equiv k_0 \mod (p-1)$, we define $d_k^{\mathrm{ur}} = \dim \mathrm{S}_k(\Gamma_1(N))_{\bar{\rho}}, d_k^{\mathrm{Iw}} = \dim \mathrm{S}_k(\Gamma)_{\bar{\rho}}$ and $d_k^{\mathrm{new}} = d_k^{\mathrm{Iw}} 2d_k^{\mathrm{ur}}$.
- For every k as above, we define a sequence $\{m_i(k)|i\geq 1\}$ of integers as follows:

$$m_i(k) = \begin{cases} \min\{i - d_k^{\rm ur}, d_k^{\rm Iw} - d_k^{\rm ur} - i\}, & \text{for } d_k^{\rm ur} < i < d_k^{\rm Iw} - d_k^{\rm ur}, \\ 0, & \text{otherwise }. \end{cases}$$

Explicitly, the sequence $\{m_i(k)|i\geq 1\}$ is given by the following palindromic pattern

$$\underbrace{0,\ldots,0}_{d_k^{\mathrm{ur}}}, 1,2,3,\ldots, \tfrac{1}{2}d_k^{\mathrm{new}} - 1, \tfrac{1}{2}d_k^{\mathrm{new}}, \tfrac{1}{2}d_k^{\mathrm{new}} - 1,\ldots,3,2,1,0,0,\ldots,$$

Bin Zhao (CNU)

Ghost conjecture

ghost series

- For every integer k, we define an algebraic weight $\kappa_k : \mathbb{Z}_p^{\times} \to \mathbb{C}_p^{\times}$, $z \mapsto z^{k-2}$ with coordinate $w_k = w_{\kappa_k} = \exp(p(k-2)) 1$. We let \mathcal{W}_k denote the weight disc which κ_k belongs to.
- For $i \ge 1$, we define

$$g_i(w) = \prod_{k \ge 2, k \equiv k_0 \mod (p-1)} (w - w_k)^{m_i(k)} \in \mathbb{Z}_p[w].$$

Definition

We define the ghost series for $\bar{\rho}$ to be the formal power series

$$G_{\bar{\rho}}(w,X) = 1 + \sum_{i=1}^{\infty} g_i(w) X^i \in \mathbb{Z}_p[w] [\![X]\!].$$

Bin Zhao (CNU)

Ghost conjecture statement

Conjecture (Bergdall-Pollack's ghost conjecture)

For any *p*-adic weight $\kappa \in W_{k_0}(\mathbb{C}_p)$, we have $NP(C_{\bar{\rho},\kappa}(X)) = NP(G_{\bar{\rho}}(w_{\kappa},X))$.

• The Buzzard regular assumption on $\bar{\rho}$ is essential. The ghost conjecture is false without this assumption.

Theorem (Liu-Truong-Xiao-Z.)

Assume $p \ge 11$ and $2 \le a \le p-5$. Then the ghost conjecture is true.

・ロト ・回ト ・ヨト ・ヨト

3

SQA

Intuition on ghost zeroes

analysis on slopes of classical modular forms

- Let $f \in S_k(\Gamma)$ be a normalized Hecke eigenform. Let $\varepsilon(p)$ be the eigenvalue of f for the diamond operator $\langle p \rangle$. We have the following facts about the slopes of classical modular forms:
 - **1** When f is new at p, we have $a_p^2 = \varepsilon(p)p^{k-2}$ and hence f has slope $\frac{k-2}{2}$;
 - 2 The other U_p-eigenvalues in S_k(Γ) come in pairs: for a normalized eigenform g ∈ S_k(Γ₁(N), ε) with T_p-eigenvalue a_p, it has two p-stabilizations f_α(z) = f(z) − βf(pz), f_β(z) = f(z) − αf(pz) in S_k(Γ) with U_p-eigenvalues α and β, where α, β are the roots of X² − a_pX + ε(p)p^{k−1}. So the slopes of these two p-old forms sum to k − 1. In particular, if v_p(a_p) can be read off from v_p(α) and v_p(β);
- The slopes of *p*-oldforms behave very different from those of *p*-newforms. Let $f \in S_k(\Gamma_1(N))_{\bar{\rho}}$ be a eigenform with T_p -eigenvalue a_p . Berger-Li-Zhu proved that $v_p(a_p) \leq \lfloor \frac{k-2}{p-1} \rfloor$ (conjecturally this can be strengthened to $\lfloor \frac{k-2}{p+1} \rfloor$);

SQA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣

Intuition on ghost zeroes

Newton polygon of $\mathrm{U}_p\text{-}\mathrm{operator}$ on the space of classical modular forms

Conjecture (Gouvěa)

For each k, write $\alpha_1(k), \ldots, \alpha_d(k)$ for the list of U_p -slopes on $S_k(\Gamma_0(Np))$, and let μ_k denote the uniform probability measure of the multiset $\{\frac{\alpha_1(k)}{k-1}, \ldots, \frac{\alpha_d(k)}{k-1}\} \subset [0,1]$. Then the measure μ_k 's weakly converge to $\frac{1}{p+1}\delta_{[0,\frac{1}{p+1}]} + \frac{1}{p+1}\delta_{[\frac{p}{p+1},1]} + \frac{p-1}{p+1}\delta_{\frac{1}{2}}$, where $\delta_{[a,b]}$ denotes the uniform probability measure on the interval [a,b], and $\delta_{\frac{1}{2}}$ is the Dirac measure at $\frac{1}{2}$.

- For any $k \ge 2$ with $k \equiv k_0 \mod (p-1)$, the Newton polygon of U_p -operator on $S_k(\Gamma)_{\bar{\rho}}$ should have a line segment of length d_k^{new} and slope $\frac{k-2}{2}$. In particular, the point $(i, v_p(c_i(w_k)))$ is not a vertex of $NP(C_{\bar{\rho},\kappa_k}(X))$, for $i = d_k^{\text{ur}} + 1, \ldots, d_k^{\text{ur}} + d_k^{\text{new}} - 1$.
- The above integers i's are exactly those integers with the property $g_i(w_k) = 0$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 のへで

Intuition on ghost multiplicities

automorphic forms on definite quaternion algebras I

- Let \mathbb{A}_f be the ring of finite adeles and $\mathbb{A}_f^{(p)}$ be the subring of finite prime-to-p adeles.
- Let D be a definite quaternion algebra over \mathbb{Q} and we assume that D is split at p. Set $D_f = D \otimes_{\mathbb{Q}} \mathbb{A}_f$. Fix an open compact subgroup K^p of $(D \otimes \mathbb{A}_f^{(p)})^{\times}$. Let $\operatorname{Iw}_p = \begin{pmatrix} \mathbb{Z}_p^{\times} & \mathbb{Z}_p \\ p\mathbb{Z}_p & \mathbb{Z}_p^{\times} \end{pmatrix}$ be the lwahori subgroup of $K_p = \operatorname{GL}_2(\mathbb{Z}_p)$.
- For every integer $k \ge 2$, let $\mathbb{Q}_p[z]^{\deg \le k-2}$ be the space of polynomials of degree $\le k-2$ over \mathbb{Z}_p . It carries a right action of the monoid $\mathbf{M}_1 = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{M}_2(\mathbb{Z}_p)^{\det \ne 0} |p|\gamma, p \nmid \delta \right\}$ given by

$$h|_{\left(\begin{smallmatrix} \alpha & \beta \\ \gamma & \delta \end{smallmatrix}\right)}(z) = (\gamma z + \delta)^{k-2} h\left(\frac{\alpha z + \beta}{\gamma z + \delta}\right), \left(\begin{smallmatrix} \alpha & \beta \\ \gamma & \delta \end{smallmatrix}\right) \in \mathbf{M}_1 \text{ and } h(z) \in \mathbb{Q}_p[z]^{\deg \le k-2}.$$

• For $k \geq 2$, define the space of classical automorphic forms on D as: $S_k^D(K^pK_p) = \operatorname{Hom}_{K_p}(D^{\times} \setminus D_f^{\times}/K^p, \mathbb{Q}_p[z]^{\deg \leq k-2})$ $S_k^D(K^p\operatorname{Iw}_p) = \operatorname{Hom}_{\operatorname{Iw}_p}(D^{\times} \setminus D_f^{\times}/K^p, \mathbb{Q}_p[z]^{\deg \leq k-2})$

3

500

Intuition on ghost multiplicities

automorphic forms on definite quaternion algebras II

- Fix $k \ge 2$, set $d_k^{\text{ur}} = \dim S_k^D(K^p K_p)$ and $d_k^{\text{Iw}} = S_k^D(K^p \text{Iw}_p)$. Define $d_k^{\text{new}} = d_k^{\text{Iw}} 2d_k^{\text{ur}}$ as before.
- Fix a decomposition of the double coset

$$\operatorname{Iw}_p\left(\begin{smallmatrix}p & 0\\ 0 & 1\end{smallmatrix}\right)\operatorname{Iw}_p = \bigsqcup_{j=0}^{p-1} \operatorname{Iw}_p v_j, \text{ for } v_j = \left(\begin{smallmatrix}p & 0\\ pj & 1\end{smallmatrix}\right), j = 0, \dots, p-1.$$

We define the U_p -operator on $S_k^D(K^p I w_p)$ via the formula

$$\mathbf{U}_p(\varphi)(x) = \sum_{j=0}^{p-1} \varphi(xv_j^{-1})|_{v_j} \text{ for } \varphi \in \mathbf{S}_k^D(K^p \mathbf{I} \mathbf{w}_p), x \in D_f^{\times}.$$

Bin Zhao (CNU)

Intuition on ghost multiplicities

families of *p*-adic automorphic forms

• Fix a character ε . Let $\kappa : 1 + p\mathbb{Z}_p \to \mathbb{Z}_p[\![w]\!]^{\times}$, $\exp(p) \mapsto 1 + w$ be the universal character and $\mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p[\![w]\!])^{(\varepsilon)}$ be the space of continuous maps from \mathbb{Z}_p to $\mathbb{Z}_p[\![w]\!]$, endowed with a right action of the monoid \mathbf{M}_1 given by

$$h|_{\left(\begin{smallmatrix} \alpha & \beta \\ \gamma & \delta \end{smallmatrix}\right)}(z) = \varepsilon(\bar{\delta})\kappa(\frac{\gamma z + \delta}{\omega(\bar{\delta})})h\left(\frac{\alpha z + \beta}{\gamma z + \delta}\right), \ h \in \mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p[\![w]\!])^{(\varepsilon)}.$$

 $\bullet\,$ We define the space of p-adic automorphic forms on $\mathcal{W}_{\varepsilon}$ to be

$$\mathbf{S}_{p\text{-}adic}^{(\varepsilon)}(K^{p}\mathbf{Iw}_{p}) = \mathrm{Hom}_{\mathbf{Iw}_{p}}(D^{\times} \setminus D_{f}^{\times}/K^{p}, \mathcal{C}(\mathbb{Z}_{p}, \mathbb{Z}_{p}\llbracket w \rrbracket)^{(\varepsilon)}),$$

and define the U_p operator on it by the same formula as above.

• When K^p is sufficiently small, the space $S_{p\text{-}adic}^{(\varepsilon)}(K^p Iw_p)$ is a finite direct sum of $\mathcal{C}(\mathbb{Z}_p, \mathbb{Z}_p[\![w]\!]).$

SQ (P

Intuition on ghost multiplicities *p*-stabilization process

• We define a map

$$\mathrm{AL}_k: \mathrm{S}_k^D(K^p\mathrm{Iw}_p) \to \mathrm{S}_k^D(K^p\mathrm{Iw}_p), \varphi \mapsto \left(\mathrm{AL}_k(\varphi)(x) = \varphi\left(x\begin{pmatrix} 0 & p^{-1} \\ 1 & 0 \end{pmatrix}\right)\Big|_{\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}}\right), x \in D_f^{\times}.$$

 AL_k is called the Atkin-Lehner involution on $S_k^D(K^pIw_p)$.

• Define two embeddings $\iota_1, \iota_2: \mathrm{S}^D_k(K^pK_p) \to \mathrm{S}^D_k(K^p\mathrm{Iw}_p)$ as

$$\iota_1(\psi) = \psi, \iota_2(\psi) = \operatorname{AL}_k \circ \iota_1(\psi) \text{ for } \psi \in \operatorname{S}^D_k(K^pK_p).$$

• Fix a set $\{u_j = \begin{pmatrix} 1 & 0 \\ j & 1 \end{pmatrix}, j = 0, \dots, p-1, u_\star = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\}$ of coset representatives of $\operatorname{Iw}_p \setminus K_p$. Define a map $\operatorname{proj}_1 : \operatorname{S}_k^D(K^p \operatorname{Iw}_p) \to \operatorname{S}_k^D(K^p K_p)$ as

$$\operatorname{proj}_1(\varphi)(x) = \sum_{j=0,\dots,p-1,\star} \varphi(xu_j)|_{u_j^{-1}}$$

Bin Zhao (CNU)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Intuition on ghost multiplicities a corank result

• Key observation: for any $\varphi \in S_k^D(K^p Iw_p)$, we have $U_p(\varphi) = \iota_2(\text{proj}_1(\varphi)) - AL_k(\varphi)$. In other words, we have an equality

$$\mathbf{U}_p = \iota_2 \circ \operatorname{proj}_1 - \mathbf{AL}_k.$$

- We can find a basis of the space $S_k^D(K^p Iw_p)$, such that the matrix $M(AL_k)$ of the Atkin-Lehner involution AL_k under this basis is antidiagonal. Let M and M_1 be the matrix of the operators U_p and $\iota_2 \circ \operatorname{proj}_1$ uner the above basis. Then the rank of M_1 is d_k^{ur} and we have $M = M_1 M(AL_k)$.
- For any $i \times i$ matrix N, we define its corank to be the integer $i \operatorname{rank}(N)$. For $1 \le i \le d_k^{\operatorname{Iw}}$, let M(i) be the upper left $i \times i$ -submatrix of M. We have

$$\text{corank of } M(i) \geq \begin{cases} i - d_k^{\text{ur}} & \text{for } i \leq \frac{1}{2} d_k^{\text{Iw}}, \\ i - (d_k^{\text{ur}} + 2(i - \frac{1}{2} d_k^{\text{Iw}})), & \text{for } i > \frac{1}{2} d_k^{\text{Iw}}. \end{cases}$$

3

SQA

Intuition on ghost multiplicities halo bound

• In summary, we have

corank of $M(i) \ge m_i(k)$, for all $1 \le i \le d_k^{\text{Iw}}$.

- There exists another basis of the space $S_{p\text{-}adic}^{(\varepsilon)}(K^p I w_p)$ such that the matrix $M' = (m'_{i,j})$ of the U_p -operator under this basis satisfies the halo bound $v_p(m'_{i,j}) \ge j \lfloor \frac{j}{p} \rfloor$.
- By Coleman's result, for every component $\mathcal{W}_{\varepsilon}$ of the weight space, we have a two variable power series $C^{(\varepsilon)}(w, X) = 1 + \sum_{n \geq 1} c_n(w) X^n \in \mathbb{Z}_p[\![w, X]\!] \subset \mathcal{O}(\mathcal{W}_{\varepsilon})[\![X]\!]$, such that

 $C^{(\varepsilon)}(w_k, X)$ is the Fredholm series of the U_p -operator on $S_k^{D,\dagger}(K^p I w_p)$ for $\kappa_k \in \mathcal{W}_{\varepsilon}$.

• We can write $c_n(w) = g_n(w) \cdot h(w) + \text{Err}(w)$, where the 'error' term Err(w) has large p-adic valuation.

イロト イヨト イヨト

∃ <\>\\ \\ \\ \\ \\ \\

Applications automorphic applications I

Conjecture (Gouvěa)

For each k, write $\alpha_1(k), \ldots, \alpha_d(k)$ for the list of U_p -slopes on $S_k(\Gamma_0(Np))$, and let μ_k denote the uniform probability measure of the multiset $\{\frac{\alpha_1(k)}{k-1}, \ldots, \frac{\alpha_d(k)}{k-1}\} \subset [0,1]$. Then the measure μ_k 's weakly converge to $\frac{1}{p+1}\delta_{[0,\frac{1}{p+1}]} + \frac{1}{p+1}\delta_{[\frac{p}{p+1},1]} + \frac{p-1}{p+1}\delta_{\frac{1}{2}}$, where $\delta_{[a,b]}$ denotes the uniform probability measure on the interval [a,b], and $\delta_{\frac{1}{2}}$ is the Dirac measure at $\frac{1}{2}$.

• Bergdall and Pollack proved that their ghost conjecture implies Gouvěa's conjecture for the $\bar{\rho}$ -component of $S_k(\Gamma_0(Np))$.

3

SQA

ヘロト ヘヨト ヘヨト

Applications automorphic applications II

Conjecture (Gouvêa-Mazur)

There is a function M(n) linear in n such that if $k_1, k_2 > 2n + 2$ and $k_1 \equiv k_2 \mod (p-1)p^{M(n)}$, then the sequences of U_p -slopes (with multiplicities) on $S_{k_1}(\Gamma_0(Np))$ and $S_{k_2}(\Gamma_0(Np))$ agree up to slope n.

 Rufei Ren proved that the ghost conjecture implies that Gouvêa–Mazur conjecture holds if we only consider the ρ̄-component of the spaces of modular forms.

3

SQA

< ロ > < 同 > < 三 > < 三 >

Applications

Application to eigencurves

- For $r \in (0,1)$, we use $\mathcal{W}^{>r}$ to denote the union of annuli where the parameter $|w|_p > r$.
- Let C be the eigencurve of tame level N. Every close point of C corresponds to a finite slope normalized overconvergent eigenform. Let wt : C → W be the weight map. We use C^{>r} to denote the preimage wt⁻¹(W^{>r}).

Conjecture

When r is sufficiently close to 1, the following statements hold:

- The space $\mathcal{C}^{>r}$ is a disjoint union of connected components Z_1, Z_2, \ldots such that $\operatorname{wt} : Z_n \to W^{>r}$ is finite and flat;
- 2 There exist a sequence of rational numbers $\alpha_1 \leq \alpha_2 \leq \ldots$ such that for all n and $z \in Z_n$, we have $v_p(a_p(z)) = \alpha_n v_p(w_{\text{wt}(z)})$;
- **3** The sequence $\alpha_1, \alpha_2, \ldots$ is a disjoint union of finitely many arithmetic progressions, counted with multiplicity.

Applications Galois applications

- Let $f = \sum_{n \ge 1} a_n q^n \in S_k(\Gamma_0(N))$ be a normalized Hecke eigenform. Let $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{Q}}_p)$ be the *p*-adic Galois representation associated to *f*.
- Let $\rho_{f,p}$ be the restriction of ρ_f to the *p*-decomposition group. Assume $v_p(a_p) > 0$ and $a_p^2 \neq 4p^{k-1}$. The local representation $\rho_{f,p}$ is crystalline and is determined by the pair (k, a_p) .

Conjecture (Breuil-Buzzard-Gee)

If the mod p reduction $\bar{\rho}_{f,p}$ of $\rho_{f,p}$ is reducible, the slope $v_p(a_p)$ belongs to \mathbb{Z} .

• We proved that ghost conjecture implies Breuil-Buzzard-Gee conjecture.

A final remark local ghost conjecture

• Let $\bar{\rho}_p : \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \to \operatorname{GL}_2(\bar{\mathbb{F}}_p)$ be a reducible local Galois representation. Assume that $p \ge 11$ and there exists $a \in \{2, \ldots, p-5\}$ and $b \in \{0, \ldots, p-2\}$, such that

$$ar{
ho}_p|_{I_p} \sim \left(\begin{smallmatrix} \omega_1^{a+1} & * \\ 0 & 1 \end{smallmatrix}
ight) \otimes \omega_1^b$$

• Let $k \ge 2$ be an integer. For a crystalline lift V_{k,a_p} of $\bar{\rho}_p$ of Hodge-Tate weights (0, k - 1), let a_p be the trace of crystalline Frobenius on the (weakly) admissible module corresponding to V_{k,a_p} . In the joint work with Ruochuan Liu, Nha Truong and Liang Xiao, we prove a local version of ghost conjecture which gives an algorithm to compute $v_p(a_p)$. In particular, we prove that $v_p(a_p) \in \mathbb{Z}$ when k is even, and $v_p(a_p) \in \frac{1}{2}\mathbb{Z}$ when k is odd.

Thank you!

Bin Zhao (CNU)

Slopes of modular forms and ghost conjecture

December 16,2022 22 / 22