A Quillen-Lichtenbaum Conjecture for Dirichlet *L*-functions

Ningchuan Zhang

University of Pennsylvania

Arithmetic and Topology, SUSTech December 17, 2022

Joint work in progress with Elden Elmanto

 Review of classical Quillen-Lichtenbaum Conjecture for Dedekind zeta functions

 $oxed{2}$ Rational equivariant algebraic K-theory of number fields

3 Quillen-Lichtenbaum for Dirichlet L-functions

Review of classical Quillen-Lichtenbaum Conjecture for Dedekind zeta functions

The Riemann and Dedekind zeta functions

Definition

Let $\mathbb F$ be a number field. The **Dedekind zeta function** attached to $\mathbb F$ is:

$$\zeta_{\mathbb{F}}(s) = \sum_{(0) \neq \mathcal{I} \preceq \mathcal{O}_{\mathbb{F}}} \frac{1}{|\mathcal{O}_{\mathbb{F}}/\mathcal{I}|^{s}} = \prod_{(0) \neq \mathfrak{p} \preceq \mathcal{O}_{\mathbb{F}}} \frac{1}{1 - |\mathcal{O}_{\mathbb{F}}/\mathfrak{p}|^{-s}}.$$

The Dedekind zeta function attached to $\mathbb Q$ is the **Riemann zeta function**.

- Converges when Re(s) > 1, admits analytic continuation to $\mathbb{C}\setminus\{1\}$.
- Special value: $\zeta_{\mathbb{F}}(1-n) \in \mathbb{Q}$.

$$\operatorname{ord}_{s=1-n}\zeta_{\mathbb{F}}(s) = \begin{cases} r_1 + r_2 - 1, & n = 1; \\ r_1 + r_2, & n > 1 \text{ odd}; \\ r_2, & n \text{ even.} \end{cases}$$

- Functional equation: $\widehat{\zeta}_{\mathbb{F}}(s) = \widehat{\zeta}_{\mathbb{F}}(1-s)$.
- Riemann Hypothesis: $\zeta_{\mathbb{F}}(s) = 0 \stackrel{??}{\Longrightarrow} s = 1 n \text{ or } \operatorname{Re}(s) = 1/2.$

Two classical theorems in algebraic number theory

Theorem (Dirichlet Unit Theorem)

The group of units in $\mathcal{O}_{\mathbb{F}}$ is a finitely generated abelian group.

$$\mathcal{O}_{\mathbb{F}}^{\times} \cong \mu(\mathbb{F}) \times \mathbb{Z}^{\oplus r_1 + r_2 - 1} \Longrightarrow \dim_{\mathbb{Q}} \mathcal{O}_{\mathbb{F}}^{\times} \otimes \mathbb{Q} = \operatorname{ord}_{s = 0} \zeta_{\mathbb{F}}(s),$$

where $\mu(\mathbb{F})$ is the group of roots of unity in \mathbb{F} .

Theorem (Class Number Formula)

$$\zeta_{\mathbb{F}}^*(0) = -\frac{|\operatorname{cl}(\mathbb{F})|}{|\mu(\mathbb{F})|} \cdot R(\mathbb{F}),$$

where

- $\zeta_{\mathbb{F}}^*(0)$ is the leading coefficient of the Taylor series of $\zeta_{\mathbb{F}}$ at s = 0.
- $cl(\mathbb{F}) := Pic(\mathcal{O}_{\mathbb{F}})$ is the ideal class group of \mathbb{F} .
- $R(\mathbb{F})$ is the Dirichlet regulator of \mathbb{F} .

Reformulation in algebraic K-theory

The first two algebraic K-groups of $R = \mathcal{O}_{\mathbb{F}}$ are:

- $K_0(R) \cong \mathbb{Z} \oplus \operatorname{Pic}(R) \cong \mathbb{Z} \oplus \operatorname{cl}(\mathbb{F}).$
- $K_1(R) \cong \operatorname{GL}(R)/E(R)$. Bass-Milnor-Serre showed $K_1(\mathcal{O}_{\mathbb{F}}) \cong \mathcal{O}_{\mathbb{F}}^{\times}$.

Reformulation of the two theorems

Dirichlet Unit Theorem:

$$\dim_{\mathbb{Q}} K_1(\mathcal{O}_{\mathbb{F}}) \otimes \mathbb{Q} = \operatorname{ord}_{s=0} \zeta_{\mathbb{F}}(s).$$

Class Number Formula:

$$\zeta_{\mathbb{F}}^*(0) = -\frac{|K_0(\mathcal{O}_{\mathbb{F}})_{\text{tors}}|}{|K_1(\mathcal{O}_{\mathbb{F}})_{\text{tors}}|} \cdot R(\mathbb{F}).$$

Algebraic K-groups of number fields

Theorem (Dirichlet, Quillen-Borel)

The algebraic K-groups $K_n(\mathcal{O}_{\mathbb{F}})$ are all finitely generated. More precisely, $K_{2n}(\mathcal{O}_{\mathbb{F}})$ is a finite abelian group when $n \geq 1$. For $K_{2n-1}(\mathcal{O}_{\mathbb{F}})$, we have:

$$\dim_{\mathbb{Q}} K_{2n-1}(\mathcal{O}_{\mathbb{F}}) \otimes \mathbb{Q} = \left\{ \begin{array}{ll} r_1 + r_2 - 1, & n = 1; \\ r_1 + r_2, & n > 1 \text{ odd}; \\ r_2, & n \text{ even}, \end{array} \right. = \operatorname{ord}_{s=1-n} \zeta_{\mathbb{F}}(s).$$

Theorem (Quillen-Lichtenbaum Conjecture, Voevodsky-Rost)

The following identity

$$\zeta_{\mathbb{F}}^{*}(1-n) = \pm \frac{|K_{2n-2}(\mathcal{O}_{\mathbb{F}})|}{|K_{2n-1}(\mathcal{O}_{\mathbb{F}})_{\text{tors}}|} \cdot R_{n}^{B}(\mathbb{F})$$

holds up to powers of 2, where $R_n^B(\mathbb{F})$ is the Borel regulator of \mathbb{F} .

From zeta functions to algebraic K-theory

Fix a prime p.

Frobenius action on
$$H^1_{\acute{e}t}(\mathcal{O}_{\mathbb{F}}[1/p,\zeta_{p^\infty}],\mathbb{Z}_p(t)) \overset{\text{Iwasawa Main Conjecture}}{\longleftrightarrow} p\text{-adic L-function} \\ H^r_{\acute{e}t}(\mathcal{O}_{\mathbb{F}}[1/p,\zeta_{p^\infty}],\mathbb{Z}_p(t))) \\ \downarrow \\ H_c^r\left(\mathbb{Z}_p^\times; H^s_{\acute{e}t}(\mathcal{O}_{\mathbb{F}}[1/p,\zeta_{p^\infty}],\mathbb{Z}_p(t))\right) \\ \downarrow \text{Hochschild-Lyndon-Serre SS} \\ H^{r+s}_{\acute{e}t}(\mathcal{O}_{\mathbb{F}}[1/p],\mathbb{Z}_p(t)) \overset{\text{Thomason SS}}{\Longrightarrow} \pi_{2t-r-s}\left(L_{K(1)}K(\mathcal{O}_{\mathbb{F}}[1/p])\right) \\ \uparrow^{\text{\'etale-motivic comparison}} \\ H^{r+s}_{mot}(\mathcal{O}_{\mathbb{F}}[1/p],\mathbb{Z}_p(t)) \overset{\text{Motivic SS}}{\Longrightarrow} \pi_{2t-r-s}K(\mathcal{O}_{\mathbb{F}}[1/p])_p^\wedge$$

- Lichtenbaum: IMC implies an étale cohomology version of QLC.
- All spectral sequences above collapse at E_2 -pages when p > 2.
- Voevodsky-Rost: the comparison map is an isomorphism when $t \ge r + s$.

Assume \mathbb{F} is totally real for simplicity. When $n \ge 1$ and p > 2,

$$\zeta_{\mathbb{F}}(1-2n) \sim_{p} \pm \frac{|H_{\acute{e}t}^{2}(\mathcal{O}_{\mathbb{F}}[1/p], \mathbb{Z}_{p}(2n))|}{|H_{\acute{e}t}^{1}(\mathcal{O}_{\mathbb{F}}[1/p], \mathbb{Z}_{p}(2n))_{\text{tors}}|} = \pm \frac{|H_{\text{mot}}^{2}(\mathcal{O}_{\mathbb{F}}[1/p], \mathbb{Z}_{p}(2n))|}{|H_{\text{mot}}^{1}(\mathcal{O}_{\mathbb{F}}[1/p], \mathbb{Z}_{p}(2n))_{\text{tors}}|} \\
= \pm \frac{|K_{4n-2}(\mathcal{O}_{\mathbb{F}}[1/p]; \mathbb{Z}_{p})|}{|K_{4n-1}(\mathcal{O}_{\mathbb{F}}[1/p]; \mathbb{Z}_{p})_{\text{tors}}|} \sim_{p} \pm \frac{|K_{4n-2}(\mathcal{O}_{\mathbb{F}})|}{|K_{4n-1}(\mathcal{O}_{\mathbb{F}})_{\text{tors}}|}.$$

The motivic spectral sequence in Adams grading: (shaded =0)

Dirichlet L-functions

Definition

A **Dirichlet character** is a group homomorphism $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$. The **Dirichlet** *L*-function attached to χ is:

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_p \frac{1}{1 - \chi(p)p^{-s}}, \qquad \chi(n) = 0 \text{ if } (n,N) \neq 1.$$

- When χ is non-trivial, $L(s,\chi)$ converges when $\mathrm{Re}(s)>0$ and admits analytic continuation to \mathbb{C} .
- Special values $L(1-n,\chi) \in \mathbb{Q}(\operatorname{Im} \chi)$. Simple zeros at s=1-n when $(-1)^n \neq \chi(-1)$.
- Functional equation: $\widehat{L}(s,\chi) = \widehat{L}(1-s,\chi^{-1})$.
- Notice $(\mathbb{Z}/N)^{\times} \cong \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$. Dirichlet L-functions are special cases of **Artin** L-functions $L(s,\rho)$ attached to Galois representations of number fields $\rho: \operatorname{Gal}(\mathbb{F}/\mathbb{K}) \to \operatorname{GL}_d(\mathbb{L})$.

Goal of the project

Goal

Formulate a Quillen-Borel Theorem and a Quillen-Lichtenbaum Conjecture for Dirichlet (or more generally Artin) L-functions.

Slogan

For the Artin L-function $L(s,\rho)$ attached to a Galois representation $\rho: G = \operatorname{Gal}(\mathbb{F}/\mathbb{K}) \to \operatorname{GL}_d(\mathbb{L})$, its order of vanishing and special value at s=1-n are computed by G-equivariant algebraic K-groups of $\mathcal{O}_{\mathbb{F}}$ "with coefficients in the representation ρ ".

Recall non-equivariantly, homotopy groups of a spectrum X with coefficients in an abelian group A is defined to be

$$\pi_n(X;A) \coloneqq \pi_n(X \otimes M(A)),$$

where M(A) is the Moore spectrum attached to A.

Rational equivariant algebraic K-theory of number fields

Rational equivariant algebraic K-theory of number fields

Quillen-Borel for Artin L-functions

Theorem (Gross)

Consider the Artin L-function $L(s,\rho)$ attached to a Galois representation $\rho: G = \operatorname{Aut}(\mathbb{F}/\mathbb{K}) \to \operatorname{GL}_d(\mathbb{L})$. Denote the \mathbb{L} -vector space $\mathbb{L}^{\oplus d}$ with the associated G-action by ρ . Then

$$\operatorname{ord}_{s=1-n}L(s,\rho)=\dim_{\mathbb{L}}\left[K_{2n-1}(\mathcal{O}_{\mathbb{F}})\otimes_{\mathbb{Z}}\underline{\rho}\right]^{G}.$$

This result can be reformulated as:

Corollary (Z.)

Notations as above. Then

$$\operatorname{ord}_{s=1-n}L(s,\rho)=\dim_{\mathbb{L}}\pi_{2n-1}\left[\left(K(\mathcal{O}_{\mathbb{F}})\otimes M\left(\underline{\rho}\right)\right)^{hG}\right],$$

where $M(\rho)$ is the G-equivariant Moore spectrum attached to ρ .

Moore spectra

Definition

Let A be an abelian group. The **Moore spectrum** attached to A is the unique connective spectrum M(A) such that

$$H_*(M(A); \mathbb{Z}) = \begin{cases} A, & *=0; \\ 0, & \text{else.} \end{cases}$$

Examples

- When $A = \mathbb{Z}$, M(A) is the sphere spectrum S^0 .
- When $A = C_n$, M(A) is the cofiber of $S^0 \xrightarrow{n} S^0$.
- $M(A \oplus B) \simeq M(A) \vee M(B)$.

Caution

The assignment $A \mapsto M(A)$ is NOT functorial in general.

Rational equivariant Moore spectra

Proposition

Let G be a finite group and V be a \mathbb{Q} -vector space. Then any G-action on V can be uniquely lifted to a G-action on the Moore spectrum M(V), such that $H_0(M(V);\mathbb{Z})$ is G-equivariantly isomorphic to V.

Notation

Denote by $M(\underline{\rho})$ the G-equivariant Moore spectrum attached to the representation $\rho: G \to \operatorname{Aut}_{\mathbb{L}}(V)$.

Proof of Quillen-Borel for Artin *L*-functions.

$$\operatorname{ord}_{s=1-n}L(s,\rho) = \dim_{\mathbb{L}} \left[K_{2n-1}(\mathcal{O}_{\mathbb{F}}) \otimes_{\mathbb{Z}} \underline{\rho} \right]^{G}$$

$$= \dim_{\mathbb{L}} \left[\pi_{2n-1} \left(K(\mathcal{O}_{\mathbb{F}}) \otimes M(\underline{\rho}) \right) \right]^{G}$$

$$= \dim_{\mathbb{L}} \pi_{2n-1} \left[\left(K(\mathcal{O}_{\mathbb{F}}) \otimes M(\underline{\rho}) \right)^{hG} \right].$$

Quillen-Lichtenbaum for Dirichlet L-functions

Quillen-Lichtenbaum for Dirichlet L-functions

Statement

Conjecture

Let $\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. Suppose $\chi(-1) = (-1)^n$, then the following holds up to powers of certain "bad" primes:

$$\operatorname{Norm}(L(1-n,\chi)) = \frac{\#\pi_{2n-2} \left[\left(K(\mathbb{Z}[\zeta_N]) \otimes M(\underline{\mathcal{O}_{\chi}}) \right)^{(\mathbb{Z}/N)^{\times}} \right]}{\#\pi_{2n-1} \left[\left(K(\mathbb{Z}[\zeta_N]) \otimes M(\underline{\mathcal{O}_{\chi}}) \right)^{(\mathbb{Z}/N)^{\times}} \right]_{\operatorname{tors}}}.$$

Here $M(\underline{\mathcal{O}_{\chi}})$ is an integral $(\mathbb{Z}/N)^{\times}$ -equivariant Moore spectrum attached to the character \mathcal{O}_{χ} . $\chi: (\mathbb{Z}/N)^{\times} \xrightarrow{\phi_{\chi}} C_m \xrightarrow{\psi_m} (\mathbb{Z}[\zeta_m])^{\times} \longrightarrow \mathbb{C}^{\times}$.

First question: Does $M(\mathcal{O}_{\chi})$ exist?

Steenrod's question

Question (Steenrod)

Let A be an abelian group with a G-action. Is there a G-action on the Moore spectrum M(A) such that the induced G-action on $H_0(M(A); \mathbb{Z})$ is isomorphic to the prescribed G-action on A?

Answer

No in general to Steenrod's question. Carlsson has constructed a counter-example for every group of the form $C_p \times C_p$.

Theorem (Z.)

For any abelian character $\chi\colon G\to\mathbb{C}^\times$ of a finite group G, an integral G-equivariant Moore spectrum $M(\underline{\mathcal{O}_\chi})$ exists as a finite G-CW spectrum. (Caution: no uniqueness in this case.)

Twisted Thomason spectral sequence

Let's now adapt the strategy for classical QLC to Dirichlet L-functions.

- {Galois representations} \simeq {locally constant sheaves on étale site}
- Iwasawa theory: $L_p^*(1-n,\chi) \longrightarrow H_{\acute{e}t}^*(\mathbb{Z}[1/(pN)],\underline{\chi}\otimes\mathbb{Z}_p(n))$, where $\underline{\chi}$ is the locally constant sheaf on $\mathbb{Z}[1/N]_{\acute{e}t}$ corresponding to χ .

Question

Is there a χ -twisted version of the Thomason spectral sequence?

Theorem (Elmanto-Z.)

Let $f: X \to Y$ be a finite G-étale cover of schemes, $\rho: G \to \operatorname{Aut}(A)$ be a Galois representation. Suppose A is flat over \mathbb{Z}_p and the G-equivariant Moore spectrum $M(\underline{\rho})$ exists. Then there is a spectral sequence:

$$E_2^{s,2t} = H^s_{\acute{e}t}(Y,\underline{\rho}(t)) \Longrightarrow \pi_{2t-s} \Big[\Big(L_{K(1)}K(X) \otimes M(\underline{\rho}) \Big)^{hG} \Big].$$

Another approach: Bootstrap from the classical QLC

Proposition

Let \mathbb{F}/\mathbb{Q} be an abelian extension. Then $\mathbb{F} \subseteq \mathbb{Q}(\zeta_N)$ for some N by the Kronecker-Weber Theorem. The Dedekind zeta function $\zeta_{\mathbb{F}}(s)$ factors as a product of Dirichlet/Artin L-functions:

$$\zeta_{\mathbb{F}}(s) = \prod_{\substack{\chi: (\mathbb{Z}/N)^{\times} \to \mathbb{C}^{\times} \\ \operatorname{Gal}(\mathbb{Q}(\zeta_{N})/\mathbb{F}) \subseteq \ker \chi}} L(s,\chi) = \prod_{\substack{\chi: \operatorname{Gal}(\mathbb{F}/\mathbb{Q}) \to \mathbb{C}^{\times}}} L(s,\chi).$$

For example, let $\sigma: (\mathbb{Z}/4)^{\times} = C_2 \to \mathbb{C}^{\times}$ be the sign character. Then we have

$$\zeta_{\mathbb{Q}(i)}(s) = \zeta_{\mathbb{Q}}(s)L(s,\sigma).$$

Recall the classical QLC relates $\zeta_{\mathbb{Q}(i)}(s)$ and $\zeta_{\mathbb{Q}}(s)$ with $K(\mathbb{Z}[i])$ and $K(\mathbb{Z})$, respectively.

QLC for $L(s, \sigma)$

Proposition

There is a cofiber sequence of algebraic K-theory spectra:

$$K(\mathbb{Z}) \xrightarrow{f} K(\mathbb{Z}[i]) \longrightarrow (K(\mathbb{Z}[i]) \otimes S^{1-\sigma})^{C_2},$$

where f is the induced by the extension of rings $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$.

Lemma

The map f induces injections in homotopy groups when 2 is inverted.

Theorem (Elmanto-Z.)

QLC holds for the Dirichlet L-function $L(s,\sigma)$ up to powers of 2 if we choose the integral equivariant Moore spectrum $M(\mathcal{O}_{\sigma})$ to be $S^{1-\sigma}$.

Proof of the Proposition.

The representation sphere $S^{\sigma-1}$ sits in a C_2 -equivariant cofiber sequence:

$$S^{\sigma-1} \longrightarrow (C_2)_+ \longrightarrow (C_2/C_2)_+ \simeq S^0.$$

Mapping the sequence above into $K(\mathbb{Z}[i])$ and then taking C_2 -fixed points yield the cofiber sequence.

Proof of the Lemma.

The inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ is a syntomic extension. From this, we obtain a transfer map $\operatorname{tr}: K(\mathbb{Z}[i]) \to K(\mathbb{Z})$ such that $(\operatorname{tr} \circ f)_* = 2 \cdot -$ on $K_*(\mathbb{Z})$.

Two key ingredients

- $K(\mathbb{Z}[i])$ is a C_2 -spectral Mackey functor.
- ullet C_2 -CW spectrum structure on the equivariant Moore spectrum $S^{1-\sigma}$.

In progress

Goal

Adapt this proof to general Dirichlet L-functions.

Current status

- We have verified QLC for Dirichlet L-functions $L(s,\chi)$, where the image of χ is a cyclic group of prime power. In this case the equivariant Moore spectrum $M(\mathcal{O}_\chi)$ has two equivariant cells. So the same argument for $L(s,\sigma)$ applies.
- More generally, we need to compute the Bredon homology and AHSS:

$$H_*^{(\mathbb{Z}/N)^\times}\left(M(\underline{\mathcal{O}_\chi});\underline{K}_*(\mathbb{Z}[\zeta_N])\right) \Longrightarrow \pi_*^{(\mathbb{Z}/N)^\times}\left(K(\mathbb{Z}[\zeta_N]) \bigwedge M(\underline{\mathcal{O}_\chi})\right).$$

• Also, we are currently computing $RO(C_2)$ -graded equivariant algebraic K-groups of $\mathbb{Z}[i]$ at prime 2.

Thank you!