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Classifying Spaces and Characteristic Classes

Let G be a topological group. Then there is a topological space BG ,
called the classifying space of G , such that

For any “good” topological space X , there is a bijection between the
set of homotopy classes of maps [X ,BG ] and the set of equivalence
classes of principal G -bundles over X , or equivalently, the cohomology
set H1(X ;G );

G 7→ BG is a functor from the category of topological groups to the
homotopy category of topological spaces, i.e., for a homomorphism
G → H of topological groups, there is a uniquely determined
homotopy class of maps BG → BH satisfying certain compatibility
conditions.
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Classifying Spaces and Characteristic Classes

To construct the classifying space BG , one starts with a simplicial
topological space EG defined by

EGn := Gn+1

with the “obvious” face and degeneracy maps.

The geometric realization
of|EG | admits a free G action, and we set BG := |EG |/G .

Remark

In the above construction, one can let G be a simplicial group and replace
geometric realization with the diagonal (of a bisimplicial set), the resulting
simplicial set, also denoted by BG , is the classifying space of the simplicial
group G .
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Classifying Spaces and Characteristic Classes

For a principal G -bundle ξ over X ,

the corresponding homotopy class of
maps f : X → BG induces a homomorphism between cohomology rings

f ∗ : H∗(BG )→ H∗(X ).

The elements in Im f ∗ are called the characteristic classes of ξ. The
cohomology classes in H∗(BG ) are called the universal characteristic
classes (associated to G ).

Example

H∗(BGLn(C);Z) = Z[c1, c2, · · · , cn].

The class ci is the ith Chern class.
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Motivic cohomology
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Motivic cohomology

Fix a base field k and abelian group A. Motivic cohomology is a collection
of functors, indexed by pairs (s, t) of non-negative integers, from Smk , the
category of smooth schemes over k , to the category A b of abelian groups

Hs,t
M (−;A) : Smk → A b.

The functors H∗,∗M (−;A) has similar properties as those of singular
cohomology:

H0,0
M (X ;A) = A, for X connected, and

for 0→ A0 → A1 → A2 → 0 a short exact sequence of abelian
groups, there is a long exact sequence

· · · → Hs,t
M (−;A0)→ Hs,t

M (−;A1)→ Hs,t
M (−;A2)

δ−→ Hs+1,t
M (−;A0) · · · .

Given a commutative unital ring R, the functors Hs,t
M (−;R)

collectively form a functor from Smk to RA lg∗,∗, the category of
bi-graded, bi-commutative R-algebras:

H∗,∗M (−;R) : Smk → RA lg∗,∗.
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Motivic cohomology

(last slide continued)
...

(homotopy invariance, or A1-invariance) For the affine line A1, the
canonical projection X × A1 → X induces an isomorphism

H∗,∗M (X ;A)
∼=−→ H∗,∗M (X × A1;A).
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Motivic cohomology

Motivic cohomology theory recovers many important invariants in
algebraic geometry.

Example

Hs,1
M (X ;Z) =


O×(X ), s = 1 (the invertible elements in O(X )),

Pic(X ), s = 2 (the Picard group of X ),

0, s 6= 1, 2.

Example (Milnor K-theory)

Hs,s
M (spec(k),A) = KM

s (k)⊗ A, where KM
s (k) are the Milnor K-groups of

k .
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Motivic cohomology

Example

For a strictly Hensel local scheme S over k , and an integer n prime to the
characteristic of k , we have

Hs,t(spec(S);Z/n) =

{
µ⊗tn (S), s = 0,

0, s 6= 0,

where µn is the étale sheaf of nth roots of unity.

Example (Chow groups)

H2t,t
M (X ;A) = CHt(X )⊗ A, where CHt(X ) are the Chow groups of X .

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 11 / 43



Motivic cohomology

Example

For a strictly Hensel local scheme S over k , and an integer n prime to the
characteristic of k , we have

Hs,t(spec(S);Z/n) =

{
µ⊗tn (S), s = 0,

0, s 6= 0,

where µn is the étale sheaf of nth roots of unity.

Example (Chow groups)

H2t,t
M (X ;A) = CHt(X )⊗ A, where CHt(X ) are the Chow groups of X .

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 11 / 43



Motivic cohomology

Example

For a strictly Hensel local scheme S over k , and an integer n prime to the
characteristic of k , we have

Hs,t(spec(S);Z/n) =

{
µ⊗tn (S), s = 0,

0, s 6= 0,

where µn is the étale sheaf of nth roots of unity.

Example (Chow groups)

H2t,t
M (X ;A) = CHt(X )⊗ A, where CHt(X ) are the Chow groups of X .

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 11 / 43



Motivic cohomology

Remark

In general, étale cohomology cannot be recovered from motivic
cohomology. In particular, it is generally not A1-invariant.

We would like to understand motivic cohomology in a
homotopy-theoretical setting, like we did in the case of singular
cohomology.
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Motivic homotopy theory
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Presheaves (of sets) over a category

For a category C , let PShv(C ) be the category of presheaves of sets over
C , i.e., contravariant functors from C to the category of sets. The
category C is regarded as a subcategory of PShv(C ) via the Yoneda
embedding

X 7→ C (−,X ).

The category of presheaves over C , PShv(C ), has all small colimits.
Moreover, all presheaves over C are colimits of representable presheaves.
Therefore, PShv(C ) may be thought of as C “formally adjoining all small
colimits”.

Similarly, the category of simplicial presheaves over C , ∆op PShv(C ), may
be thought of as C “formally adjoining all small homotopy colimits”.

For instance, algebraic stacks are simplicial presheaves over schemes.
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Grothendieck topologies, sites

A site is a category C

with a piece of additional data, called a
Grothendieck topology, that allows us to discuss things “locally”.

The canonical example of a site is the category of topological spaces, with
the Grothendieck topology given by inclusions of open sets.

Different Grothendieck topologies can be defined for the same category.
Sometimes, one is “finer” than another.
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Zariski, Nisnevich, and étale sites

Many Grothendieck topologies are considered on the category of schemes
(over a field k).

For example, we have the Zariski topology, the Nisnevich topology, and
the étale topology, each finer than the previous one.

In the three cases above, the rings of “locally defined functions” are:

Zariski: local rings (R,m), i.e., commutative unital rings R with a
unique maximal idea m;

Nisnevich: Henselian rings, i.e., local rings (R,m) such that
factorizations of monic coprime polynomials over the residue field
R/m lift to factorizations over R.

étale: Strict Henselian rings, i.e., Henselian rings with separably
closed residue fields.
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The motivic homotopy category over a field k

We would like to have a “homotopy category of schemes” which sees
motivic cohomology as a homotopy invariant.

For any site S , the category PShv(S ) has a canonical model category
structure depending on the Grothendieck topology of S .

Let Smk
Nis be the site of smooth schemes over a field k with the Nisnevich

topology. Define
Motk• := ∆op PShv•(Smk

Nis).

Therefore, the category of ”motivic spaces” Motk• over k canonically has a
structure of model category, i.e., notaions of weak equivalences, fibrations
and cofibrations.
We denote the corrsponding homotopy category by HMotk• .
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Motivic classifying spaces

For a group object G in Motk• , we may take the simplicial object EG
defined by

EGn = Gn+1

and EG is therefore a bisimplicial presheaf with a G -action. Take

BNisG = diag(EG/G ) ∈ Motk•

The simplicial Nisnevich presheaf BNisG “classifies” Nisnevich G -torsors:

TorsorNis(−)
'−→ HMotk•(−,BNisG )

where TorsorNis(X ) denotes the isomorphism classes of Nisnevich
G -torsors over X .
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Étale classifying spaces

Let Smk
ét denote the Grothendieck site of smooth schemes over k with the

étale topology.

There is a “forgetful” morphism of Grothendieck sites

π : Smk
ét → Smk

Nis

which induces a pair of adjoint functors

π∗ : ∆op PShv•(Smk
ét) � ∆op PShv•(Smk

Nis) : π∗.

For an algebraic group G over k , let the étale classifying space of G be

BG := BétG := π∗π
∗(BNisG ) ∈Motk• .

The space BG “classifies” étale G -torsors:

Torsorét(−)
'−→ HMotk•(−,BG )

where Torsorét(X ) denotes the isomorphism classes of étale G -torsors over
X .
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Étale classifying spaces

Let Smk
ét denote the Grothendieck site of smooth schemes over k with the

étale topology.
There is a “forgetful” morphism of Grothendieck sites

π : Smk
ét → Smk

Nis

which induces a pair of adjoint functors

π∗ : ∆op PShv•(Smk
ét) � ∆op PShv•(Smk

Nis) : π∗.

For an algebraic group G over k , let the étale classifying space of G be

BG := BétG := π∗π
∗(BNisG ) ∈Motk• .

The space BG “classifies” étale G -torsors:

Torsorét(−)
'−→ HMotk•(−,BG )

where Torsorét(X ) denotes the isomorphism classes of étale G -torsors over
X .

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 19 / 43
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The A1-localization

We can modify the model category structure over Motk• ,

so that the
projections X × A1 → X become weak equivalences.

We denote the corresponding homotopy category by HA1Motk• .

It turns out that the homotopy category HA1Motk• is much easier to work
with than HMotk• .

However, the advantages come with costs. For instance, the natural
transformation

Torsorét(−)→ HA1Motk•(−,BG )

is, in general, neither surjective nor injective.
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Motivic Eilenberg-Mac Lane spaces

Let H∗,∗M (−;R) denote motivic cohomology with coefficients in a
commutative unital ring R.

For 0 ≤ t ≤ s, we have the motivic
Eilenberg-Mac Lane space K (R(t), s) representing motivic cohomology,
i.e.,

HA1Motk•(−,K (R(t), s)) ∼= Hs,t
M (−;R)

where H∗,∗M (−;R) denotes the motivic cohomology with coefficients in R.
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The motivic Steenrod reduced power operations

For p an odd prime, we have operations

Pi : Hs,t
M (−;Fp)→ H

s+2i(p−1),t+i(p−1)
M (−;Fp)

satisfying a set of axioms similar to those of the classical Steenrod reduced
power operations in algebraic topology.

For p = 2, we have the motivic counterpart of the Steenrod squares as
well.
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The (complex) topological realization

Take k = C.

Let T• be a the category of (compactly generated, weak Hausdorff)pointed
topological spaces with the usual model category structure.
There is a ”geometric realization functor”

tC : MotC• → T•

taking a complex algebraic variety X to its underlying complex manifold
X (C), regarded as a topological space.
Passing to homotopy categories, we have

tC : HA1MotC• → HT•.
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The cycle class map

The tC satisfies
tC(K (R(t), s)) ∼= K (R, s).

Therefore, we have the following natural transformation

cl : Hs,t
M (−;R)→ Hs(tC(−);R)

which we called the cycle class map. It generalizes the ordinary cycle class
map

cl : CHt(X )⊗ R = H2t,t
M (X ;R)→ H2t(X (C);R)

where X is a smooth complex algebraic variety.
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The cycle class map

The cycle class map cl : Hs,t
M (−;R)→ Hs(tC(−);R)

is a homomorphism of R-algebras, and

is compatible with the Bockstein homomorphisms

Hs,t
M (X ;Fp) Hs+1,t

M (X ;Z)

Hs(tC(X );Fp) Hs+1(tC(X );Z),

cl

δ

cl

δ

and the Steenrod operations

Hs,t
M (X ;Fp) H

s+2i(p−1),t+i(p−1)
M (X ;Fp)

Hs(tC(X );Fp) Hs+2i(p−1)(tC(X );Fp).

cl

Pi

cl

Pi
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The cycle class map for BG

For a complex algebraic group G , we have tC(BG ) ∼= BG (C), and
therefore

cl : Hs,t
M (BG ;R)→ Hs(BG (C);R)

and in particular,

cl : CHt(BG )⊗ R = H2t,t
M (BG ;R)→ H2t(BG (C);R).

Example

Let G = GLn or SLn. Then

cl : CHt(BGLn) = H2t,t
M (BGLn;Z)→ H2t(BUn;Z),

cl : CHt(BSLn) = H2t,t
M (BSLn;Z)→ H2t(BSUn;Z).

are isomorphisms.

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 26 / 43



The cycle class map for BG

For a complex algebraic group G , we have tC(BG ) ∼= BG (C), and
therefore

cl : Hs,t
M (BG ;R)→ Hs(BG (C);R)

and in particular,

cl : CHt(BG )⊗ R = H2t,t
M (BG ;R)→ H2t(BG (C);R).

Example

Let G = GLn or SLn. Then

cl : CHt(BGLn) = H2t,t
M (BGLn;Z)→ H2t(BUn;Z),

cl : CHt(BSLn) = H2t,t
M (BSLn;Z)→ H2t(BSUn;Z).

are isomorphisms.

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 26 / 43



The main theorems
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On the Chow ring of BPGLn

Let PGLn = GLn/C×. The Chow ring and cohomology of BPGLn are
difficult.

Some of the “obvious” things are:

Rationally, we have isomorphisms

CH∗(BPGLn)⊗Q ∼= CH∗(BSLn)⊗Q,
H∗(BPGLn;Q) ∼= H∗(BSLn;Q).

All torsion classes are n-torsion.{
H1(BPGLn;Z) = H2(BPGLn;Z) = 0,

H3(BPGLn;Z) ∼= Z/n.
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Review of the literature

Currently, the study of the cohomology and Chow ring of BPGLn is rather
incomplete:

(Kono and Mimura, 1971) The F2-module structure of
H∗(BPGL4k+2;F2).

(Toda, 1986), The F2-algebra structure of H∗(BPGL4k+2;F2) and
H∗(BPGL4;F2).

(Vavpetič and Viruel, 2005) Some results on H∗(BPGLp;Fp) for a
prime number p.

(Vezzosi, 2000) An almost complete computation of H∗(BPGL3) and
CH∗(BPGL3).

(Vistoli, 2007) A complete computation of H∗(BPGL3) and
CH∗(BPGL3), and an almost complete computation of H∗(BPGLp)
and CH∗(BPGLp) for p > 3 a prime number.
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Review of the literature

However, none of the works listed above concerns the integral cohomology
H∗(BPUn) for arbitrary n. Regarding this, we have

(G, 2016) The ring structure of H∗(BPGLn) in dimensions less than
11.

(G, 2019, 2020) A distinguished subring generated by p-torsion
classes of CH∗(BPGLn) and H∗(BPGLn).

(G-Zhang-Zhang-Zhong, 2021) The p-local cohomology
Hk(BPGLn)(p) for k < 2p + 5 and a prime number p.
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On the Chow ring of BPGLn

For m | n, consider the diagonal homomorphism

∆ : PGLm → PGLn, A 7→

A . . .

A

 .

The induced map B∆ : BPGLm → BPGLn plays a key role in what follows.
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On the Chow ring of BPGLn

Theorem (G, 2020)

Let p be an odd prime, and n a positive integer divisible by p. Then there
are nontrivial p-torsion classes

ρp,k(n) ∈ CHpk+1+1(BPGLn), yp,k(n) = cl(ρp,k(n)) ∈ H2pk+1+2(BPGLn)

for k ≥ 0,

such that for p | m | n and ∆ : PGLm → PGLn, we have

B∆∗(ρp,k(n)) = ρp,k(m), B∆∗(yp,k(n)) = yp,k(m). (1)

Furthermore, suppose r ≥ 1 satisfies pr | n and pr+1 - n. Then there are
injective ring homomorphisms

Z[Yk | 0 ≤ k ≤ 2r − 1]/(pYk) ↪→ CH∗(BPGLn), Yk 7→ ρp,k(n), (2)

Z[Yk | 0 ≤ k ≤ 2r − 1]/(pYk) ↪→ H∗(BPGLn), Yk 7→ yp,k(n). (3)
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On the Chow ring of BPGLn

When there is no risk of ambiguity, we write ρp,k and yp,k for ρp,k(n) and
yp,k(n), respectively.

For each n > 1, we define the subrings{
RM(n) = Z[ρp,k | k ≥ 0]/(pρp,k) ⊂ CH∗(BPGLn),

R(n) = Z[yp,k | k ≥ 0]/(pyp,k) ⊂ H∗(BPGLn).

Theorem (G, 2021)

Let p be an odd prime and n > 1 an integer with p-adic valuation r > 0.
Then the homomorphisms B∆∗ restrict to isomorphisms{

B∆∗ : RM(n)
∼=−→ RM(pr ), ρp,k(n) 7→ ρp,k(pr ),

B∆∗ : R(n)
∼=−→ R(pr ), yp,k(n) 7→ yp,k(pr ).
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On the Chow ring of BPGLn

We are not yet able to determine the polynomial relations in {ρp,k}k≤i or
{yp,k}k≤i for i ≥ 2r .

However, for r = 1, we have the following

Theorem (G, 2020)

For p and odd prime, and n > 0 an integer satisfying p | n and p2 - n, the
classes ρp,k ∈ CH∗(BPGLn) for k = 0, 1, 2, satisfy a nontrivial polynomial
relation

ρp
2+1

p,0 + ρp+1
p,1 + ρpp,0ρp,2 = 0, (4)

and similarly for yp,k ∈ H∗(BPGLn), k = 0, 1, 2, we have

yp
2+1

p,0 + yp+1
p,1 + ypp,0yp,2 = 0. (5)
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Outline of the proof
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Outline of the proof

The proofs involve:

a non-toral p-elementary subgroup of PGLn and the action of its
normalizer on its cohomology;

the Steenrod reduced power operations

Pi : Hs,t
M (−;Fp)→ H

s+2i(p−1),t+i(p−1)
M (−;Fp).

the Serre spectral sequence for

BGLn → BPGLn → K (Z, 3)

the Beilinson-Lichtenbaum Conjecture/Theorem (Voevodsky, 2008):

Hs,t
M (X ;Z/m) ∼= Hs

ét(X ;µ⊗tm )

for s ≤ t, where µm is the étale sheaf represented by

spec(k[x ]/(xm − 1)).
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The Beilinson-Lichtenbaum Conjecture/Theorem

The Beilinson-Lichtenbaum Conjecture/Theorem is a generalization of a
fundamental result, the norm residue isomorphism theorem (or
Bloch–Kato conjecture), which concerns an isomorphism between Milnor
K-theory and étale cohomology of a field.
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The “fundamental” classes

We construct “fundamental” classes

x1 ∈ H3(BPGLn), ζ1 ∈ H3,2
M (BPGLn)

satisfying cl(ζ1) = x1.

For singular cohomology, the short exact sequence of Lie groups

1→ Z/n→ SLn → PGLn → 1

induces a connecting homomorphism H1(−;PGLn)→ H2(−;Z/n).
Composing it with the connecting homomomorphim
H2(−;Z/n)→ H3(−;Z), we obtain

[−,BPGLn] ∼= H1(−;PGLn)→ H3(−;Z) ∼= [−,K (Z, 3)],

and by Yoneda lemma we obtain a homotopy class of maps
BPGLn → K (Z, 3), which is the “fundamental” class x1 ∈ H3(BPGLn).
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The “fundamental” classes

The construction of ζ1 ∈ H3,2
M (BPGLn) is based on a similar idea, but is

more subtle.

Recall the isomorphism

HMotkNis(−,BG ) ∼=H1
ét(−;G ) =

{iso. classes of étale principal G -bundles over(−).}.

Therefore, the connecting homomorphism H1
ét(−;PGLn)→ H2

ét(−;µn)
induces a morphism in HMotCNis :

BPGLn → B2µn,

which passes to a morphism in HMotC• .
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The “fundamental” classes

Recall the Beilinson-Lichtenbaum Conjecture/Theorem:

Hs,t
M (X ;Z/m) ∼= Hs

ét(X ;µ⊗tm )

for s ≤ t,

from which we deduce

H2
ét(−;µn)

∼=H2
ét(−;µ⊗2

n ) (C containing a primitive nth root of unity)

∼=H2,2
M (−;Z/n) (Beilinson-Lichtembaum)

∼=HA1MotC• (−,K (Z/n(2), 2)).

Since B2µn is A1-invariant, we have

H2
ét(−;µn) ∼= HA1MotC• (−,B2µn),

and an isomorphism in HMotC• :

B2µn → K (Z/n(2), 2).

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 40 / 43



The “fundamental” classes

Recall the Beilinson-Lichtenbaum Conjecture/Theorem:

Hs,t
M (X ;Z/m) ∼= Hs

ét(X ;µ⊗tm )

for s ≤ t, from which we deduce

H2
ét(−;µn)

∼=H2
ét(−;µ⊗2

n ) (C containing a primitive nth root of unity)

∼=H2,2
M (−;Z/n) (Beilinson-Lichtembaum)

∼=HA1MotC• (−,K (Z/n(2), 2)).

Since B2µn is A1-invariant, we have

H2
ét(−;µn) ∼= HA1MotC• (−,B2µn),

and an isomorphism in HMotC• :

B2µn → K (Z/n(2), 2).

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 40 / 43



The “fundamental” classes

Recall the Beilinson-Lichtenbaum Conjecture/Theorem:

Hs,t
M (X ;Z/m) ∼= Hs

ét(X ;µ⊗tm )

for s ≤ t, from which we deduce

H2
ét(−;µn)

∼=H2
ét(−;µ⊗2

n ) (C containing a primitive nth root of unity)

∼=H2,2
M (−;Z/n) (Beilinson-Lichtembaum)

∼=HA1MotC• (−,K (Z/n(2), 2)).

Since B2µn is A1-invariant, we have

H2
ét(−;µn) ∼= HA1MotC• (−,B2µn),

and an isomorphism in HMotC• :

B2µn → K (Z/n(2), 2).

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 40 / 43



The “fundamental” classes

Recall the Beilinson-Lichtenbaum Conjecture/Theorem:

Hs,t
M (X ;Z/m) ∼= Hs

ét(X ;µ⊗tm )

for s ≤ t, from which we deduce

H2
ét(−;µn)

∼=H2
ét(−;µ⊗2

n ) (C containing a primitive nth root of unity)

∼=H2,2
M (−;Z/n) (Beilinson-Lichtembaum)

∼=HA1MotC• (−,K (Z/n(2), 2)).

Since B2µn is A1-invariant, we have

H2
ét(−;µn) ∼= HA1MotC• (−,B2µn),

and an isomorphism in HMotC• :

B2µn → K (Z/n(2), 2).

Xing Gu (Westlake) Cohomology of BPGLn 2022-12-17 40 / 43



The “fundamental” classes

Finally we obtain a morphism in HMotC• :

BPGLn → K (Z/n(2), 2)→ K (Z(2), 3)

which represents the “fundamental” class ζ1 ∈ H3,2
M (BPGLn).
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The rest is topology

Recall that the cycle class map

cl : H∗,∗M (BPGLn)→ H∗(BPGLn)

is a ring homomorphism that commutes with the Steenrod operations.

In particular, we have the “topological fundamental class” x1 = cl(ζ1).
The rest of the proofs therefore involve mostly singular cohomology.
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Thank You!
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